Step	Stage of protocol	Possible methodological approach	Potential selection population	Resulting selection population	Step product	Explanation	Example
Dreise	. Tdontification	approach	population	population			
Project	t Identification						
1	Review current status of water body and/or other aquatic resources	DPSIR (current state)	All water bodies	All water bodies w/ HYMO issues and status < good	List of all water bodies w/ HYMO issues and status < good	The WFD and other European directives stipulate that all rivers be assessed. The list of those that do not meet the minimum status requirement of "good" will be reviewed for potential HYMO rehabilitation project sites	Ex. A water body may have a lower than "good" status because of poor water quality due to high nutrient loads (QE). If the source of nutrients is erosion of legacy bank sediments in incised channels, there may exist HYMO rehabilitation potential. If the cause is over-application of fertilizers or failing wastewater treatment, then there is no HYMO rehabilitation potential and the water body can be dropped from the potential site list
2 (3)	Identify regional policy objectives	DPSIR (<i>drivers</i>)	Water bodies with RBMP or other plans	All Step 1 water bodies with HYMO issues and status < good, preferably with relevant RBMP	List of all water bodies w/ HYMO issues and status < good, including those with a RBMP or other plan.	RBMPs are required for all river basins. The list created in Step 1 should be reviewed against the RBMP to see how rehabilitation might be connected to other projects and future planning. The RBMP may have already identified certain rivers, river reaches or river types as priorities for rehabilitation. Issues of ownership, politics, finances, cultural resources, etc. may eliminate some sites from the potential projects list	Ex. Rehabilitation potential is also dependent on river basin management. Erosion of legacy bank sediments in a reach may be controlled by reducing storm water runoff and rehabilitating the reach channel and floodplain. However, if long- term basin planning includes removing an upstream dam in the future, it may be wise to start with the upstream dam removal and consider the channel rehabilitation later, as a subsequent dam removal may make a prior reach rehabilitation unnecessary or cause a future failure

Step	Stage of protocol	Possible methodological approach	Potential selection population	Resulting selection population	Step product	Explanation	Example
3 (2)	Identify water body goals and specific objectives	DPSIR (reference <i>state</i>)	Reference conditions benchmarks (BM) water bodies	Reference conditions BM water bodies for comparison to water bodies selected in Step 2	List of water bodies and their characteristics that can provide reference conditions BMs	Identify one or more reference rivers/reaches and the key quality elements (QE) and HYMO processes that will serve as reference condition benchmarks. These rivers/reaches will be used in Step 4 to assess potential rehabilitation sites, to identify causative issues affecting the impaired water body and the effective actions to rehabilitate in Steps 5a, 5b, to provide the monitoring framework and/or serve as a monitoring control in Step 8	Ex. The "high" status water quality BM reference condition for the nutrient QE is a lower nutrient concentration than the existing condition. The HYMO BM is minimal bank erosion and a channel with a floodplain that is active on average 3 times a year
Projec	t formulation						
4	Compare water body status with objectives	DPSIR (<i>impacts</i>)	Step 2 potential water body sites	Water bodies with QE deficits determined by comparing Step 3 reference sites with Step 2 potential rehabilitation sites	Analysis QE deficits for Step 2 water bodies	Analyse the QE deficits resulting in the status < good. A HYMO processes deficit analysis should be completed using the BM reference conditions for the relevant QEs	Ex. QE deficit: The nutrient concentration is too high for "good" status. HYMO process deficits: The existing incised channel overflows only in the 25+ year recurrence event and bank erosion is significant, w/d ratio too low
5a (5)	Identify issues affecting the water body both directly and indirectly	DPSIR (<i>pressures</i>)	Cause and effect issues of HYMO degradation resulting in QE deficits	HYMO degradation cause and effect issues for QE deficits identified in Step 4	List of causes and effects for the QE deficits for the Step 2 water bodies	Examine both basin hydrology and in-stream hydraulics for causes and effects of HYMO process degradation and identify which causes must be addressed to achieve "good" status. Be sure to include potential human activity changes (land uses), without which a rehabilitation project will fail or with which will not be	Ex. Hydrology: Percent basin impervious surface area is high leading to large flow and minimal sediment delivery regimes with high erosion potential. Hydraulics: Streambed incised to bedrock causing bank erosion and failure. Water quality: Stored nutrients released from eroding bank sediments.

Step	Stage of protocol	Possible methodological	Potential selection	Resulting selection	Step product	Explanation	Example
	protoco.	approach	population	population			
						needed. Issues of time and	
						spatial scales must be	
						addressed at this point.	
5b	Identify	DPSIR	HYMO process	Appropriate HYMO	List of types of	Achieving the reference BM	Ex. Increase basin infiltration
(5)	appropriate	(responses)	rehabilitation	process	НҮМО	conditions may be possible, but	capacity to reduce storm runoff
	HYMO process		actions	renabilitation	renabilitation	probably is not. After	flow, reconfigure channel
	renabilitation			Stop En HVMO OF	actions to	(Stop 4) identify what	geometry erosion and deposition
	actions			causes relevant to	acceptable EP	processes must be addressed	equilibrium and the flood plain to
				the achievable FPs		and what endpoints (FP) are	flood on average 3 times per
				for Step 4 sites		acceptable for achieving "good"	vear. The watershed is partially
						status. Select the set of	built-out so infiltration zone sites
						hydrologic and hydraulic	are somewhat limited. There is
						processes to be considered for	room to reconstruct a floodplain
						rehabilitation actions to achieve	
						these EPs. Spatial scale issues	
						should be addressed	
6	Review and	SMART (<i>specific</i>)	НҮМО	Appropriate HYMO	Report on	For each HYMO action there is a	Ex. Disconnect impervious
	select		rehabilitation	rehabilitation	specific	plurality of implementation	surfaces with infiltration zones
	appropriate		techniques to	techniques	implementable	techniques, each with a specific	using a combination of hard and
	robabilitation		meet EP		techniques	cost operation and	solit techniques. Reconligure
	techniques			actions		maintenance requirements	resistance for the equilibrium
	teenniques			actions		spatial and temporal	flow and sediment transport
						requirements, and efficiency	regimes. Watershed open space
							limitations may require some
							retrofitting of built areas
7	Prioritisation of	SMART	Recent	Cost effective	Analysis of	Cost benefit analysis – including	Ex. Soils are appropriate for
	rehabilitation	(attainable)	rehabilitation	technique(s) for	cost effective	integration of multiple objective	infiltration zones and existing,
	projects and		project costs for	each project site	technique(s)	scenarios. Highly engineered	upland open space should be
	justification		the relevant		and costs for	techniques tend to be very	used. If there is insufficient open
			techniques		each project	costly and may require costly	space, creation of wetlands in a
					site	operation and maintenance	constructed floodplain might be
						errorts. Success monitoring may	considered, which may address
						and expertise The costs	z or more of the dencits. Open
			1	1	1	and expense. The Costs	space preservation and

Step	Stage of protocol	Possible methodological approach	Potential selection population	Resulting selection population	Step product	Explanation	Example
						(damage, legal, replacement, etc.) of failure may also be high (flooding, etc.).	reforestation schemes should be preferred and engineered infiltration systems should be avoided where possible.
8	Design monitoring programme (BACI/BA/CI) and key indicators	SMART (<i>measurable</i>)	Existing and new monitoring protocols for the key indicators	Key indicators to be monitored and monitoring protocol	Programme of key indicators and monitoring protocol for each rehabilitation site	The monitoring program must be designed prior to implementation of the rehabilitation project. Data from controls or reference sites may be needed for engineering design and "before" monitoring must begin at least 1 year before changes are made. Depending on the type of changes proposed, a considerably longer "before" monitoring program may be required. Time and spatial scales of monitoring should be carefully considered. Any change in the watershed or channel is a disturbance and the response time and space will vary	Ex. A "before" monitoring programme should include piezometric and percolation studies of potential infiltration sites. In addition, a complete geomorphologic study is needed of the stream and riparian areas. If sediment transport and stream flow data are needed, the studies should start several years before implementation. If a reference reach is being used for channel design purposes, the geomorphologic study of the reference channel must be done in advance of any engineering design, cost determination, or permitting. Reduction in nutrient concentrations may be quick and monitored only for several years at the immediate site. Stability of the reconfigured channel may need to be monitored over several decades depending on flood recurrence. Results of channel monitoring may result in renewed nutrient concentration monitoring

Step	Stage of protocol	Possible methodological approach	Potential selection population	Resulting selection population	Step product	Explanation	Example
Projec	t implementation			•			
9	Implementation		Selected rehabilitation sites and watersheds	Rehabilitated sites and watersheds	Completed rehabilitation project	Most rehabilitation projects have several parts, some of which should be implemented consecutively and some simultaneously. The temporal scales of disturbance and recovery must be considered	Ex. Infiltration zones should be implemented first as they may have an effect on stream flow, sediment supply, flood periodicity, and erosion rates. Reduction in bank erosion may sufficiently reduce nutrient load (EP) so that channel geometry reconfiguration is not needed to address the nutrient concentration QE deficit, though it may be desirable for other reasons
Post-p	roject actions						
10	Monitoring	SMART (relevant, time-bound) WISE approach or participation ladder	Rehabilitated site(s) and appropriate parts of the watershed	Monitoring results	Periodic monitoring results reports	Key indicators are all monitored at appropriate temporal and spatial scales	Ex. The "after" monitoring programme included real-time water quality (nutrient, turbidity, etc.) and flow monitoring, monthly bank erosion rate monitoring, and an annual channel geometry survey. Nutrient concentration was reduced, but the acceptable EP was not reached. The expected flow reduction did not occur
11	Evaluation	SMARTER (<i>evaluate</i>)	Monitoring results	Successes and failures of rehabilitation project	Report and proposed corrections	Most projects experience a mix of success and failure. Sometimes corrections are easily identified. Monitoring and subsequent evaluation should be conducted	Ex. The infiltration zones were studied to determine if they were functioning as designed. Some plantings had failed and some zones were undersized. Corrections were proposed

protocol methodological selection selection approach population population	Step product Explanation	Example
12 Update goals SMARTER (<i>re-</i> and restoration management actions SMARTER (<i>re-</i> <i>evaluate</i>) results Immediate Revi results results <i>corrections and reha</i> future monitoring, goal <i>evaluation, and mar</i> rehabilitation action	RevisedUpdating goals and revising management actions are iterative processes and periodicity will depend on HYMO processes, monitoring results, changing patterns of human activity, etc	Ex. Repair and expansion of the infiltration zones will be completed immediately. Monitoring will continue for another 2 years. If the EP is not reached, reconfiguration of channel geometry and floodplain