Revegetate riparian zones

From REFORM wiki
Jump to: navigation, search

General description

River Pielach in Austria : Riparian vegetation in a Nature 2000 area located near Neubach (source : BOKU, IHG)

Planting and/or preserving riparian zones can be an effective means of reducing nutrient and sediment loads into streams (Martin et al. 1999). But the extent to which riparian buffer zones can restore riparian ecosystems in terms of ecological function and species composition is unknown in detail (Parkyn et al. 2003). General objectives of most riparian planting schemes are to reverse the impacts of land use change by improving channel stability, aquatic habitat and terrestrial biodiversity. Passive restoration of riparian areas may be effective if invasive species do not compete with native vegetation (Roni et al. 2005).


It is important to ensure a coordinated riparian management effort along a catchment to achieve improvements in many chemical and ecological parameters of streams. Rehabilitation of streams is most successful when planting riparian zones from the headwaters down through the catchment and a continuous buffer length is achieved. Sometimes channel narrowing occurs at the retired streams, presumably from the release of stock pressure on banks and increased vegetation holding the sediment in place (Parkyn et al. 2003). The ability of restoration measures to host typical riparian species and to increase local plant diversity depends on the distance to near-natural stretches as the presence of a viable seed bank is an important prerequisite for the rehabilitation of natural vegetation. Species dispersal and establishment might be hampered by decisions taken outside the scope of the restoration project (Rohde et al. 2005).

Expected effect of measure on (including literature citations)

The trees in riparian areas can efficiently take up excess nutrients and may also serve to increase infiltration and decrease sediment inputs to surface waters. Many of the factors that contribute to diverse ecological improvements may only be achieved over long time scales. Rehabiliation of temperature and shade may take decades, and the structure and habitat function of woody debris in streams may take centuries to develop (Parkyn et al. 2003).

Category Description Source (citation)
Hydromorphology Improved channel stability Parkyn et al. 2003
Vegetation Riparian habitat improvement Gundersen et al. 2010
Physico-chemical parameters Reduced nutrient loads, improved water quality Gundersen et al. 2010; Parkyn et al. 2003
Fish Increased fish diversity Parkyn et al. 2003; Penczak 1995

Temporal and spatial response

Not available.

Pressures that can be addressed by this measure


Not available.

Case studies where this measure has been applied

Useful references

  • Gundersen, P., A. Laure´n, L. Fine´r, E. Ring, H. Koivusalo, M. Sætersdal, J.-O. Weslien, B. D. Sigurdsson, L. Ho¨gbom, J. Laine, and K. Hansen (2010). Environmental Services Provided from Riparian Forests in the Nordic Countries. AMBIO, 39, 555–566.
  • Martin, T. L., N. K. Kaushik, J. T. Trevors, and H. R. Whiteley (1999). Review: denitrification in temperate climate riparian zones. Water, Air, and Soil Pollution, 111, 171–186.
  • Parkyn, S. M., R. J. Davies-Colley, N. J. Halliday, K. J. Costley, and G. F. Croker (2003). Planted riparian buffer zones in New Zealand: do they live up to expectations? Restoration Ecology, 11, 436–447.
  • Penczak, T. (1995). Effects of removal and regeneration of bankside vegetation on fish population-dynamics in the Warta River, Poland. Hydrobiologia, 303, 207–210.
  • Rohde, S., M. Schutz, F. Kienast, and P. Englmaier (2005). River widening: an approach to restoring riparian habitats and plant species. River Research and Applications, 21, 1075–1094.
  • Roni, P., K. Hanson, T. Beechie, G. Pess, M. Pollock, and D. M. Bartley (2005). Habitat rehabilitation for inland fisheries. Global review of effectiveness and guidance for rehabilitation of freshwater ecosystems. FAO Fisheries Technical Paper, 484.

Other relevant information