Difference between revisions of "Modify aquatic vegetation maintenance"

From REFORM wiki
Jump to: navigation, search
(General description)
(Modify aquatic vegetation maintenance)
Line 1: Line 1:
 
=Modify aquatic vegetation maintenance=
 
=Modify aquatic vegetation maintenance=
  
Modify aquatic vegetation maintenance06. In-channel structure and substrate improvement
+
Modify aquatic vegetation maintenance06.  
 +
 
 +
In-channel structure and substrate improvement
 
==General description ==
 
==General description ==
 
Many streams, especially in the lowland regions, are located in agricultural areas. Due to the lack of riparian forests and shading as well as high nutrient inputs, excessive growth of aquatic vegetation (macrophytes) is common. Maintenance of these streams usually includes the mechanical removal of aquatic vegetation several times per year to ensure the efficient drainage of agricultural areas, reduce sedimentation and flooding risks.  
 
Many streams, especially in the lowland regions, are located in agricultural areas. Due to the lack of riparian forests and shading as well as high nutrient inputs, excessive growth of aquatic vegetation (macrophytes) is common. Maintenance of these streams usually includes the mechanical removal of aquatic vegetation several times per year to ensure the efficient drainage of agricultural areas, reduce sedimentation and flooding risks.  

Revision as of 08:54, 14 October 2010

Modify aquatic vegetation maintenance

Modify aquatic vegetation maintenance06.

In-channel structure and substrate improvement

General description

Many streams, especially in the lowland regions, are located in agricultural areas. Due to the lack of riparian forests and shading as well as high nutrient inputs, excessive growth of aquatic vegetation (macrophytes) is common. Maintenance of these streams usually includes the mechanical removal of aquatic vegetation several times per year to ensure the efficient drainage of agricultural areas, reduce sedimentation and flooding risks.

This management practice favours macrophyte species able to cope with a high level of physical disturbance while intolerant species become rare or disappear (homogenization of macrophyte communities), and frequent cuttings decrease macrophyte diversity (Baatrup-Pedersen and Riis 2004). Moreover, fish and invertebrates are affected by weed cutting since macrophytes are important habitats in lowland streams, cutting increases animal drift (Statzner and Stechmann, 1977, Kern-Hansen, 1978, Meyer, 1987), and a large number of animals are removed with the cut plants (Pearson and Jones, 1978, Dawson et al., 1991).

To mitigate the negative effects of dredging or weed cutting, several guidelines recommend to leave some macrophytes, either on one or both sides of the channel or as alternating patches that induce a sinuous flow pattern (e.g. DWA 2010) and to cut the weeds in summer rather than in spring.

ModifyWeedCut1.jpg ModifyWeedCut2.jpg

Fig. 1. Conventional (left) and modified, alternating (right) weed-cutting practices in a lowland stream (Untermilde, Germany, photos courtesy of R. Bostelmann, DWA 2010).

Applicability

Expected effect of measure on (including literature citations):

  • HYMO (general and specified per HYMO element)
  • physico � chemical parameters
  • Biota (general and specified per Biological quality elements)

Temporal and spatial response

Pressures that can be addressed by this measure

Cost-efficiency

Case studies where this measure has been applied

Useful references

Other relevant information