Difference between revisions of "1D numerical morphodynamic models"
(Created page with "<Forecasterlink type="getToolInfoBox" code="18" /> =1D numerical morphodynamic models= ==Type== Hydromorphological models ==Basic principles== Fundamental equations for conse...") |
m (→Sample applications) |
||
Line 68: | Line 68: | ||
Brandmayr G. (2009): Möglichkeiten der Restrukturierung der Waldzeller Ache unter beschränkten Platzverhältnissen. Masterarbeit am IWHW, Universität für Bodenkultur Wien. | Brandmayr G. (2009): Möglichkeiten der Restrukturierung der Waldzeller Ache unter beschränkten Platzverhältnissen. Masterarbeit am IWHW, Universität für Bodenkultur Wien. | ||
− | Chang H.H., Harrison L., Lee W., Tu S. (1996): Numerical Modeling for Sediment-Pass Through Reservoirs. Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 7, pp. 381-388. | + | Chang H.H., Harrison L., Lee W., Tu S. (1996): Numerical Modeling for Sediment-Pass Through Reservoirs. Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 7, pp. 381-388. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281996%29122%3A7%28381%29 |
Fäh R., Müller R., Rousselot P., Vetsch D. (2008): Sohlenentwicklung in einer Flussaufweitung beim Durchgang einer Hochwasserwelle - Vergleich zwischen Messung und numerischer Modellierung. Wasser Energie Luft, 100. Jahrgang, Heft 2, Baden. | Fäh R., Müller R., Rousselot P., Vetsch D. (2008): Sohlenentwicklung in einer Flussaufweitung beim Durchgang einer Hochwasserwelle - Vergleich zwischen Messung und numerischer Modellierung. Wasser Energie Luft, 100. Jahrgang, Heft 2, Baden. | ||
Line 74: | Line 74: | ||
Hunziker R. and Schilling M. (2001): Sedimenttransportmodelle als Instrument zur Planung flussbaulicher Massnahmen. Ingenieurbiologie, Heft 4/2001. | Hunziker R. and Schilling M. (2001): Sedimenttransportmodelle als Instrument zur Planung flussbaulicher Massnahmen. Ingenieurbiologie, Heft 4/2001. | ||
− | Schleiss A., Peter A., Fäh R., Scheidegger Ch. (2008): Forschungsprojekt "Integrales Flussgebietsmanagement". Wasser Energie Luft, 100. Jahrgang, Heft 3, Baden. | + | Schleiss A., Peter A., Fäh R., Scheidegger Ch. (2008): Forschungsprojekt "Integrales Flussgebietsmanagement". Wasser Energie Luft, 100. Jahrgang, Heft 3, Baden. http://www.wsl.ch/land/genetics/web_rivermanagement/pdf/schleiss_etal_WEL_2008.pdf |
[[Category:Tools]][[Category:Hydromorphological models]] | [[Category:Tools]][[Category:Hydromorphological models]] |
Latest revision as of 12:34, 16 April 2013
1D numerical morphodynamic models
Type
Hydromorphological models
Basic principles
Fundamental equations for conservation of water mass and water flow momentum, spatially averaged over cross-section segments and time-averaged over all turbulent fluctuations. Equilibrium sediment transport predictor or advection-relaxation equation for sediment transport. Exner equation for conservation of sediment mass. Possibly with extension to mixtures of different sediment grain sizes, accounting for mutual interactions through empirical relations for hiding and exposure.
Outputs
Flow velocities, water depths, water levels, flow shear stresses. Sediment transport, bed level, erosion, sedimentation, bed sediment composition.
Rivertypes
Related Pressures
- Surface water abstraction
- Groundwater abstractions
- Hydropeaking
- Sediment discharge from dredging
- Reservoir flushing
- Hydrological regime modification
- Interbasin flow transfers
- Discharge diversions and returns
- Colinear connected reservoir
- Artificial barriers downstream from the site
- Artificial barriers upstream from the site
- Alteration of instream habitat
- Sand and gravel extraction
- Sedimentation and sediment input
- Embankments, levees or dikes
- Loss of vertical connectivity
- Impoundment
- Alteration of riparian vegetation
- Channelisation / cross section alteration
- Other pressures
Related Measures
- Improve/Create water storage
- Reduce water consumption
- Increase minimum flows
- Recycle used water
- Improve water retention
- Reduce surface water abstraction with return
- Water diversion and transfer
- Reduce surface water abstraction without return
- Reduce groundwater extraction
- Reduce undesired sediment input
- Manage dams for sediment flow
- Reduce erosion
- Add/feed sediment
- Prevent sediment accumulation in reservoirs
- Improve continuity of sediment transport
- Trap sediments
- Reduce anthropogenic flow peaks
- Modify hydropeaking
- Shorten the length of impounded reaches
- Increase flood frequency and duration in riparian zones or floodplains
- Favour morphogenic flows
- Link flood reduction with ecological restoration
- Ensure minimum flows
- Manage aquatic vegetation
- Establish environmental flows / naturalise flow regimes
- Facilitate downstream migration
- Manage sluice and weir operation for fish migration
- Remove barrier
- Install fish pass/bypass/side channel for upstream migration
- Modify culverts, syphons, piped streams
- Fish-friendly turbines and pumping stations
Useful references
Selected software systems
Basement: http://www.basement.ethz.ch/
CONCEPTS: http://www.ars.usda.gov/Research/docs.htm?docid=5453
CCHE1D: http://www.ncche.olemiss.edu/sw_download
FLORIS-FLORIS 2000: http://www.scietec.at/navigation/powerslave,id,17,nodeid,17,_language,en.html
FLUVIAL-12: http://chang.sdsu.edu/fluvial.html
HEC 6 / HEC-RAS 4.1: http://www.hec.usace.army.mil/software/legacysoftware/hec6/hec6.htm
MIKE 11: http://www.mikebydhi.com/Products/WaterResources/MIKE11.aspx
MORMO:
RubarBE
SNUMB
SOBEK: http://www.deltaressystems.com/hydro/product/108282/sobek-suite
SRH-1D: http://www.usbr.gov/pmts/sediment/model/srh1d/index.html
WASPI-HEC 6: http://www.hydroconsult.net/database/software_waspi_hec6_de.htm
Theoretical background
Colby B.R. (1964): Practical Computations of Bed-Material Discharge. Journal of the Hydraulics Division, ASCE, 90 (HY2), pp. 217-246.
Fäh R., Müller R., Rousselot P., Vetsch D., Volz C., Farshi D. (2008): System Manuals of BASEMENT, Version 1.5. Laboratory of Hydraulics, Glaciology and Hydrology (VAW), ETH Zürich.
Fäh R. (1997): Numerische Simulation der Strömung in offenen Gerinnen mit beweglicher Sohle. Mitteilung Nr. 153, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich.
Reichel G., Fäh R., Baumhackl G. (2000): FLORIS2000 - Ansätze zur 1.5D-Simulation des Sedimenttransportes im Rahmen der mathematischen Modellierung von Fließvorgängen. Internat. Symposium "Betrieb und Überwachung wasserbaulicher Anlagen", Graz.
USACE, Hydrologic Engineering Center (1993): HEC-6 Generalized Computer Program. Scour and Deposition in Rivers and Reservoirs. User`s Manual, Davis, CA, USA. Vetsch D., Fäh R., Farshi D., Müller R. (2005): Basement - Ein objektorientiertes Softwaresystem zur numerischen Simulation von Naturgefahren. Mitteilungen VAW 190, pp. 201-212, Zürich.
Vieira D.A. and Wu W. (2002): CCHE1D Version 3.0 - User´s Manual. School of Engineering, The University of Mississippi, USA.
Sample applications
Brandmayr G. (2009): Möglichkeiten der Restrukturierung der Waldzeller Ache unter beschränkten Platzverhältnissen. Masterarbeit am IWHW, Universität für Bodenkultur Wien.
Chang H.H., Harrison L., Lee W., Tu S. (1996): Numerical Modeling for Sediment-Pass Through Reservoirs. Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 7, pp. 381-388. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281996%29122%3A7%28381%29
Fäh R., Müller R., Rousselot P., Vetsch D. (2008): Sohlenentwicklung in einer Flussaufweitung beim Durchgang einer Hochwasserwelle - Vergleich zwischen Messung und numerischer Modellierung. Wasser Energie Luft, 100. Jahrgang, Heft 2, Baden.
Hunziker R. and Schilling M. (2001): Sedimenttransportmodelle als Instrument zur Planung flussbaulicher Massnahmen. Ingenieurbiologie, Heft 4/2001.
Schleiss A., Peter A., Fäh R., Scheidegger Ch. (2008): Forschungsprojekt "Integrales Flussgebietsmanagement". Wasser Energie Luft, 100. Jahrgang, Heft 3, Baden. http://www.wsl.ch/land/genetics/web_rivermanagement/pdf/schleiss_etal_WEL_2008.pdf