Difference between revisions of "3D numerical hydrodynamic models"
(Created page with "<Forecasterlink type="getToolInfoBox" code="14" /> =3D numerical hydrodynamic models= ==Type== Hydromorphological models ==Basic principles== Fundamental equations for conser...") |
m (→3D numerical hydrodynamic models) |
||
Line 19: | Line 19: | ||
<Forecasterlink type="getMeasuresForTool" code="14" /> | <Forecasterlink type="getMeasuresForTool" code="14" /> | ||
+ | |||
+ | |||
==Useful references== | ==Useful references== | ||
===Selected software systems=== | ===Selected software systems=== |
Revision as of 16:53, 15 April 2013
3D numerical hydrodynamic models
Type
Hydromorphological models
Basic principles
Fundamental equations for conservation of water mass and water flow momentum, time-averaged over all turbulent fluctuations (RANS = Reynolds Averaged Navier-Stokes equation) or time-averaged over only the smaller turbulent fluctuations (LES = Large Eddy Simulation)
Outputs
Flow velocities, water depths, water levels, flow shear stresses
Rivertypes
Related Pressures
- Surface water abstraction
- Groundwater abstractions
- Hydropeaking
- Sediment discharge from dredging
- Reservoir flushing
- Hydrological regime modification
- Interbasin flow transfers
- Discharge diversions and returns
- Alteration of instream habitat
- Sand and gravel extraction
- Sedimentation and sediment input
- Embankments, levees or dikes
- Loss of vertical connectivity
- Impoundment
- Alteration of riparian vegetation
- Channelisation / cross section alteration
- Other pressures
Related Measures
- Improve/Create water storage
- Reduce water consumption
- Increase minimum flows
- Recycle used water
- Improve water retention
- Reduce surface water abstraction with return
- Water diversion and transfer
- Reduce surface water abstraction without return
- Reduce groundwater extraction
- Reduce anthropogenic flow peaks
- Modify hydropeaking
- Shorten the length of impounded reaches
- Increase flood frequency and duration in riparian zones or floodplains
- Favour morphogenic flows
- Link flood reduction with ecological restoration
- Ensure minimum flows
- Manage aquatic vegetation
- Establish environmental flows / naturalise flow regimes
- Create low flow channels in over-sized channels
- Narrow water courses
- Widen water courses
- Allow/increase lateral channel migration or river mobility
- Remeander water courses
- Shallow water courses
Useful references
Selected software systems
CFX-5:
Comet:
Delft3D: http://www.deltaressystems.com/hydro/product/621497/delft3d-suite
FIDAP: http://www.hpcvl.org/software/applications/physics-and-engineering-software/fidap
Flo++:
Flow-3D: http://www.flow3d.com/
Fluent:
PHOENICS:
Rsim-3D:
SSIIM: http://folk.ntnu.no/nilsol/ssiim/
STAR-CD:
SWIFT:
TELEMAC-3D: http://www.opentelemac.org/index.php?option=com_content&view=article&id=18&Itemid=2&lang=en
Theoretical background
AEA (2002): CFX-5 User Documentation Version 5.5.1, AEA Technology Engineering Software Limited, Olsen, 2000arloo, Ontario, Canada.
Fischer-Antze T., Stoesser T., Bates P., Olsen N.R.B. (2001): 3D numerical modelling of open channel flow with submerged vegetation. Journal of Hydraulic Research, Vol. 39, pp. 303-310.
Fluent (1998): FIDAP 8 Theory Manual. Fluent Inc., Lebanon, New Hampshire, USA.
Fluent (2001): FLUENT 6.0 User´s Manual. Fluent Inc., Lebanon, New Hampshire, USA.
Hervouet J.M., Hubert J.-L., Janin J.-M., Lepeintre F., Peltier E. (1994): The computation of free surface flows with TELEMAC: an example of evolution towards hydroinformatics. Journal of Hydraulic Research, Vol. 32, extra issue, pp. 45-64.
Olsen N.R.B. (1999a): Computational Fluid Synamics in Hydraulic and Sedimentation.
Spalding D.B. (1986): PHOENICS-Beginners Guide and User Manual. CHAM London. Tritthart, M., Gutknecht, D. (2005): Validation of a three-dimensional numerical model for river flow based on polyhedral finite volumes. Proc. XXXI IAHR Congress, 11.-16. September, Seoul, Korea, pp. 581-590.
Tritthart M. (2000): Anwendung von dreidimensionalen numerischn Methoden beim Sedimentmanagement in Talsperrenreservoirs. Diplomarbeit, Universität Innsbruck.
Tritthart M. (2005): Three-Dimensional Numerical Modelling of Turbulent River Flow using Polyhedral Finite Volumes. Wiener Mitteilungen Wasser-Abwasser-Gewässer, Band 193, Institut für Wasserbau und Ingenieurhydrologie, TU Wien.
Tritthart M. (2006): 3D-Fließgewässermodellierung mit vielflächigen finiten Volumen an der österreichischen Donau. Wasserbaukolloquium 2006 - Strömungssimulation im Wasserbau, 9.-10. März 2006, Dresden; Dresdner Wasserbauliche Mitteilungen, Band 32, Technische Universität Dresden, S. 193-200.
Sample applications
Habersack H., Mayr P., Gierlinger R., Schneglberger S. (2000): Mehrdimensionale Abflussmodellierung am Beispiel der Lafnitz. Wiener Mitteilungen Band 165, Wien.
Hauer C., Unfer G., Schmutz S., Tritthart M., Habersack H. (2007): The necessity of modelling the stability of rheophilous cyprinids spawning grounds including comparing 1D, 2D and 3D numerical models. Proc. 6th Ecohydraulics Symposium, 18.-23.2.2007, Christchurch, New Zealand.
Olsen N.R.B. (2000a): A three-dimensional numerical model for simulation of sediment movements in water intakes with multiblock option. User´s Manual, Norwegian University of Science and Technology, Trondheim.